Gloves Off: How Effective Are Gloves at Preventing the Spread of COVID-19?

It has been shown time and time again that masks are very effective at preventing the spread of respiratory illnesses. I’m sure you know this, but you should be wearing one every time you are in public. That much is no longer up for debate. The same, however, cannot be said for gloves. There is a real chance that we are throwing billions of gloves into our rivers and seas for no reason. The WHO, HSE and CDC have all released statements which tell us that there is no evidence that gloves are effective in preventing the spread of COVID-19 in the general public.

The month of March is when Spring begins. For many, this March was the beginning of something much more sinister. We were terrified, and rightly so, by the emergence of the novel coronavirus COVID-19. Now, half a year later, not only are we still fighting the virus, we are also fighting the wave of people who believe that the virus is a hoax. But even those of us with good intentions have created new evils.

This Spring brought with it the familiar sight of brightly coloured patches appearing in our fields and meadows. You must have seen them, the brilliant blues and pure, snowy whites. Look closer; they are not flowers. Every day, we are throwing away millions of disposable masks and gloves, many of which end up contaminating the natural world.

If you don’t have a few cloth masks by now, you are behind the game. Not only do they save you money in the long run, they are also better for the environment and more comfortable. It has been shown time and time again that masks are very effective at preventing the spread of respiratory illnesses. I’m sure you know this, but you should be wearing one every time you are in public. That much is no longer up for debate.

The same, however, cannot be said for gloves. There is a real chance that we are throwing billions of gloves into our rivers and seas for no reason. The WHO, HSE and CDC have all released statements which tell us that there is no evidence that gloves are effective in preventing the spread of COVID-19 in the general public.

Medical professionals are constantly touching contaminated surfaces and coming into contact with infected people. They are truly on the front line. For the most part, medical professionals only use gloves when there is a risk of coming into contact with a patient’s bodily fluids. Other uses would include surgery or if there is a chance of injury, for example, from a needle. Unless you are taking care of someone who is either vulnerable or infected with COVID-19, there is no benefit to wearing them.

Source: WHO

What’s more, medical professionals have been trained in how to effectively use, remove, and dispose of gloves. They know how frequently the gloves must be disposed of, and they know to be careful what they touch when their gloves may be contaminated. In other words, they are aware that it is not in any way a substitute for hand hygiene. In the medical profession, the use of gloves is absolutely necessary. For everyone else, however, it is a somewhat different story.

When you touch a contaminated surface, the virus transfers from the surface onto your hands. That is true whether you are wearing gloves or not. It doesn’t matter whether the virus is on your skin or the gloves. In both cases if you touch another surface, you transfer the virus to it. In both cases if you touch your eyes, nose or mouth, you can become infected.

When you take off a pair of contaminated gloves, the virus can easily transfer onto your skin. It is recommended, then, that you wash your hands every time you remove a pair of gloves. Do you see the problem here? It is cheaper, better for the environment and in fact more effective to simply cut out the middleman and wash your hands. You are adding an unnecessary extra step to the process; one which contaminates our rivers and seas.

Source: CDC

Wearing gloves gives people a false sense of security. We think we are protected, but in fact we are just as vulnerable to infection. If you are not wearing gloves, you are more likely to wash or disinfect your hands because you know the virus might be on your hands. When we think we are protected, we become complacent. What’s more, when you contaminate a pair of gloves and then throw them away, you have created a new surface for the virus to live on. That creates a new risk for the sanitation workers who have to pick the gloves up off the ground and dispose of them. The same problem does not happen when you wash your hands instead.

Source: HSE (https://www2.hse.ie/conditions/coronavirus/face-masks-disposable-gloves.html)

Another consideration is that when the general public uses vast amounts of medical gloves, they create a shortage for the people who actually need them: medical professionals. As was the case with hydroxychloroquine, uninformed panic has caused people to unnecessarily deplete necessary resources, to the detriment of doctors and hospital patients.

What happens when we have poisoned our oceans with so much plastic that the ecosystems within begin to break down? Plastic pollution has been shown to reduce the efficiency of the process in the oceans which transports CO2 from the atmosphere to the sea floor. That is worrying, since right now the ocean takes up about 30% of the atmospheric fossil fuel CO2 each year.

What’s more, 70% of all the oxygen on earth is produced by marine plants which include phytoplankton: small photosynthesising organisms in the oceans. The most abundant photosynthesising organism on earth, Prochlorococcus, has been shown to reduce oxygen production when exposed to the chemicals which leach out of plastics in the sea.

That is aside from the better-known impacts of plastic pollution, like those which occur when marine animals ingest or are entangled in plastic. If for whatever reason you are still using disposable face masks, make sure to cut the straps to prevent entanglement.  

Not only do animals ingest plastics, we ingest them too! A recent study tested 47 tissue samples from human organs and found that every single one of them contained plastic. We are creating a massive crisis for the future in the name of halting the current one, and it is not even helping. As good as our intentions may be, the use of gloves to combat COVID-19 may well be costing more lives than it is saving. If that’s true, why do it?

People are wearing gloves because they are scared and because they want to do everything they can to slow the spread of this deadly virus. That is admirable. We should be scared, and we should be doing everything we can to help. This virus is very real and very dangerous. The problem is that gloves likely don’t help, and they create new problems.

If you feel you must use gloves, you have to make sure that you change them as frequently as you would wash your hands. Do not touch your face while wearing them and be ready to take them off the moment you think they have been contaminated. The best way to remove them is to roll them down from the wrist, since this turns them inside-out, reducing the amount of contact between your hands and the surface of the gloves. You also need to make sure that you wash your hands when you take the gloves off or risk contaminating your hands.

The Lives of Otters

If you walk at night along an open marsh or riverbank, you may well come across an incredible animal. This mammal with two arms and two legs is agile enough to chase and catch a fish underwater and smart enough to use tools. There are as many as 13 distinct species of otter, but I will be focusing on two: the sea otter and the Eurasian river otter. Sea otters recently captured the hearts of millions when they were featured on David Attenborough’s Our Planet. In this piece, I will be looking at what makes otters so special, and what makes them so damn endearing.

If you walk at night along an open marsh or riverbank, you may well come across an incredible animal. This mammal with two arms and two legs is agile enough to chase and catch a fish underwater and smart enough to use tools. There are as many as 13 distinct species of otter, but I will be focusing on two: the sea otter and the Eurasian river otter. Sea otters recently captured the hearts of millions when they were featured on David Attenborough’s Our Planet. In this piece, I will be looking at what makes otters so special, and what makes them so damn endearing.

While humans eat about 3% of our body weight in food each day, Eurasian otters can stuff in a whopping 15 to 20%. That figure goes up to 25 to 30% for sea otters! That is roughly the equivalent of an average human eating 3 bowling balls every day. Sea otters eat so much because they have an extremely fast metabolism, which they need to keep warm in the cold ocean waters. That is also the reason why sea otters have the thickest fur of any animal, with 850,000 to 1,000,000 hairs per square inch. Pleasingly, that is around 420 times thicker than human hair.

To quote Attenborough, “such a luxuriant coat requires a great deal of attention”. Sea otters must thus spend several hours a day grooming themselves to remove salt crystals and add natural oils. They also use this time to work air bubbles into their coat to provide an extra layer of insulation. This trapped air provides 4 times more insulation than the same thickness of blubber. Take that seals! Their thick, oily fur means that an otter’s skin never gets wet.

Around 90% of all the sea otters in the world can be found off the coast of Alaska. The way they eat is truly amazing. Sea otters dive down to collect crabs, sea urchins and other hard-shelled invertebrates. They also collect a rock, which they store under their armpit. The otter returns to the surface and balances the rock on their belly. They then use the rock as a tool to break open the shells and get to the sweet meat within.

Believe it or not, sea otters are also responsible for sequestering carbon, and are thus an ally in the fight against climate change. Sea otters are a ‘keystone’ species, meaning that they have a disproportionately large effect on the ecosystem when compared to other species. One effect of removing sea otters from their ecosystem is that sea urchin populations explode, devouring the carbon-storing kelp forests which the otters call home. In this way, sea otters are indirectly responsible for sequestering between 4.4 and 8.7 million tonnes of carbon each year. In other words, they sequester the same amount of carbon that would be released from deforesting an area between the size of Disney World and Washington DC every year.

Adult sea otters can grow up to nearly 5 feet! Bet you didn’t see that coming. That’s about 4 bowling pins or a little over 1 Danny DeVito. That makes sea otters the largest of all ‘mustelids’: the class of animals which includes weasels, ferrets and badgers. Sea otters are also the only mustelids which don’t produce a strong-smelling secretion from their anal glands to attract mates and mark territory. In order to stop themselves floating apart, sea otters wrap themselves in seaweed to form what is called a ‘raft’. Sea otters have been observed floating in groups of up to 1,000 individuals.

Beginning in around 1741, Russian hunters brought sea otter populations to their knees in order to sell their warm, dense fur. In the process, they completely exterminated the Stellar’s Sea Cow, a close relative of the manatee which measured 9 meters in length. That’s about half a bowling lane or a little over 6 Danny DeVitos in case you were wondering. Sea otter populations rebounded from just 50 individuals in 1914 to around 3,000 animals today. Some populations, however, are once again in decline as a result of oil pollution and habitat loss. They are currently listed as endangered on the IUCN red list.

Eurasian otters mark their territory by depositing faeces on boulders, bridge-footings and grass tussocks. These blobs of dung, known as ‘spraints’ have been used in recent years to track otter populations and find out what they eat. That is because it is very hard to observe them in the wild, since they are mainly nocturnal and largely hunt underwater. Eurasian otters are not picky. While they mainly feed on fish, the Eurasian otter has also been found to eat crayfish, frogs, insects, and even animals like ducks and rabbits.

Despite being solitary creatures, these otters have a pretty complex social life. Males (called ‘dogs’) have a rigid territory which they defend from other males, while female territories overlap. It is thought that females (called ‘bitches’) share a group range, but that each individual has a core area where they spend more than half their time. Essentially the only reason males and females meet is to mate. The male contributes nothing but sperm to the raising of young, despite cubs taking up to 13 months to become self-sufficient hunters. The nest in which the mother raises the young is known as a ‘holt’.

Otter populations have declined significantly across Europe, with the species recently becoming extinct in the Netherlands. Ireland is left as one of the last strongholds for the Eurasian Otter. Their decline was linked to the use of organochlorine pesticides, highly toxic chemicals which have made their way into the aquatic food chain. Organochlorine pesticides include DDT, the chemical at the heart of Rachel Carson’s seminal 1962 work Silent Spring. The fight against organochlorine pesticides was the catalyst for the birth of the environmentalist movement, and it is easy to see why.

Organochlorine pesticides are a form of chlorinated hydrocarbon, a group which also includes Polychlorinated Biphenyls (PCBs), an industrial chemical which has also been found in the spraints of Irish otters. More PCBs are found in the spraints of Irish otters the further east you go, since there is more industrial activity in the area surrounding the capital. Sadly, significant numbers of Irish otters are also killed on the roads, and habitat loss poses another grave threat.

While some residue from organochlorine pesticides can still be found in the spraints of Irish otters, levels are generally low. Some populations are starting to recover in the UK thanks to valiant conservation attempts, but we are very much not off the hook yet. If we are to save these adorable marine mammals, we must continue to designate riverbanks, marshes and coastlines around the world as special areas of conservation and set about the task of rewilding them. Only then may the otter’s prey return, and with it, the security of their species.

Carbon Neutral Lent: Week 1 – Food

Ireland’s carbon footprint is an unusual one. At 34% of the total national emissions, agriculture has a greater impact on our emissions profile than any other European country. For comparison, waste (which includes the footprint of all our plastic) is responsible for just 1.5% of our emissions. Even so, it seems like businesses and well-meaning citizens are far more concerned with ditching plastic straws than they are with reducing the footprint of the foods that we eat.

Welcome to the first week of Carbon Neutral Lent! The pancakes are gone, which means the time has come for spreadsheets. This week we will be looking at the messy and complicated topic of the carbon footprint of food. Don’t forget to head over to the CNL landing page to download the tracker spreadsheet which will allow you to estimate your carbon ‘foodprint’ at the end of each week by asking you one simple question! Also, come on down to our event in the Landmark pub in Dublin on the 3rd of March, where CNL founder Darragh Wynne will be joined by a variety of guests to talk about the carbon footprint of food. Come for the information, stay for the music!

Ireland’s carbon footprint is an unusual one. At 34% of the total national emissions, agriculture has a greater impact on our emissions profile than any other European country. For comparison, waste (which includes the footprint of all our plastic) is responsible for just 1.5% of our emissions. Even so, it seems like businesses and well-meaning citizens are far more concerned with ditching plastic straws than they are with reducing the footprint of the foods that we eat.

Our unusually high agricultural footprint is not, however, necessarily a result of our eating habits. It is because we make our money producing extremely high-carbon foods and then exporting them to other countries. To be precise, it is because we produce a whole lot of beef and dairy. Dairy cow numbers increased in Ireland by 27% between 2013 and 2018, in large part due to the removal of the milk quota in 2015.

This goes to show that the types of food we grow and eat can have a massive effect on our emissions. A kilogram of locally grown, in season carrots comes in at 0.25 kgs of CO2e (carbon dioxide equivalent). The same weight of beef is a whopping 17kg CO2e. In other words, pound for pound, beef produces 68 times more carbon than locally grown carrots.

Of course, the comparison is not so simple as this. A kilogram of beef contains about 5 times more calories and about 25 times more protein than a kilogram of carrots. Still, 5 times the calories for 68 times the carbon is a monster trade-off. Getting 1 calorie from beef produces around 14 times more carbon than one calorie from a carrot. Plus, carrots contain far more fiber and carbohydrates and far less fat than beef.

As for protein, how much you need depends on how much you weigh and how active you are. The rule for a sedentary person is that you need 0.8 grams of protein per kilogram of body weight per day. As a 70 kilo man, I would need 56 grams of protein per day. Conveniently, that is exactly the average recommended intake for a sedentary man. That’s about 3.2 Tesco beef burgers of 84 grams each.

Alternatively, you could get that protein from non-animal sources for a fraction of the carbon price. Quorn burgers, for example, contain 18g of protein per hundred grams. In other words, I’d need 3.7 Quorn burgers of 84 grams each to get my daily dose of protein. What’s more, the carbon footprint would be reduced by 90%!

Quorn is far from being the only low-carbon source of protein. We get protein from almost everything we eat. 100 grams of chickpeas, for example will give you 20 grams of protein. Soybeans are also a great source, with 100 grams containing 16.6 grams of protein.  It is easy to see how, over the course of a day, we can take in as much protein as we need without the help of meat.

It is important to note, however, that the recommended protein intake for someone who partakes in a strenuous physical activity like weight lifting or endurance running is considerably higher. Nearly twice as high, in fact, with strength and endurance athletes recommended to take in 1.2 to 1.7 grams of protein per kilogram of body weight per day. If I were to spend all day in the gym, then, I would need 119 grams of protein per day. For active people such as this, protein shakes can provide the rest of the daily protein that you are not getting from food. Plus, there are vegan options available!

That brings us nicely to the question of how much better veganism is for the environment than vegetarianism. One study found that you can cut 1.82 kilograms of CO2e per day by switching from a medium-meat diet to a vegetarian one. The same study found that switching from a vegetarian to a vegan diet would save nearly a kilogram more carbon per day. In other words, going vegan is a fair bit better for emissions.

Cheese is the third highest-emissions food after beef and lamb. That’s right, a kilo of cheese produces more emissions than a kilo of pork or chicken, although it must be said that cheese is usually eaten in much smaller quantities. Vegan food also uses less land and water to produce than eggs and dairy, further reducing a vegan’s impact on the environment. Whether or not food comes from animals is perhaps the best indicator of how high-carbon it will be. If you hadn’t guessed, animal products are almost always worse. But why is meat so bad for the environment?

The simple answer is that growing crops and eating them is a far more efficient process than raising animals for food. That is because you have to grow a lot of crops to feed to the animals while they grow big enough for slaughter. It uses much less land and water and produces far fewer emissions to cut out the middleman and go straight to the source of the nutrition; the plants.

Plants build their bodies using carbon they take from the air, water they take from the ground and energy they take from the sun. They don’t need to move, digest food, pump blood around their bodies or keep themselves warm and that saves them a lot of energy.

Animals, on the other hand, burn up most of the energy they take in from plants by walking around, breathing and keeping warm. If you feed a cow 100 calories in the form of grain, only 3% of those calories will be returned in the meat. That means that you have to feed them a whole lot more over their lifetime than you will get back in the end.

In the case of ‘ruminant’ animals like cattle and sheep, there is the added problem of methane. Ruminants are hoofed mammals that have a 4-chambered stomach, one of which is called the rumen. Microbes break down the ruminant’s food in a process known as ‘enteric fermentation’, which produces a lot of methane. To be precise, it produces 30% of all anthropogenic methane emissions.

Water use is another major consideration, with a 2003 study finding that “Producing 1 kg of animal protein requires about 100 times more water than producing 1 kg of grain protein”. I worked out for a previous article that eating a pound of beef wastes about as much water as leaving your shower on for about 15 hours.

Eating plants is not just low-carbon. It is also gives a much higher yield per hectare than producing meat. In a much-cited study from 2013, Emily Cassidy et al. found that “given the current mix of crop uses, growing food exclusively for direct human consumption could, in principle, increase available food calories by as much as 70%, which could feed an additional 4 billion people”.

In other words, if it were not for the fact that we waste plant nutrition by feeding it to livestock, the population could grow to 10 billion by 2050 (as projected) and we could still feed every person on earth with ease. According to the same study, “36% of the calories produced by the world’s crops are being used for animal feed, and only 12% of those feed calories ultimately contribute to the human diet”. That is a huge amount of waste considering how many people do not have enough to eat.

That brings us very neatly to the incredibly important topic of food waste. In Ireland, over a million tonnes of food are wasted each year. The excellent Climate Queens podcast figured out that that’s enough to fill Croke Park with food waste twice each year. Globally, one third of all food produced goes to waste. That is more than enough to feed the roughly 11% of people in the world who are chronically malnourished.

If food waste were a country, it would have the third highest emissions of any country on earth after the US and China. That is because approximately 10% of all carbon emissions globally come from food waste, costing the world about €550 billion per year.

Food waste is a win-win area in which we can both seriously cut emissions and increase the total food available for consumption. Try keeping a journal of which foods you are throwing out. If you find that you are regularly throwing out half a tub of coleslaw, for example, you can start buying a smaller tub. It really is that simple!

There is so much more we could say about the carbon footprint of food. I haven’t even touched on the emissions from fertilizers, how different types of feed affect the emissions profile of livestock or the very important topic of animal cruelty in agriculture.

If you take two things away from this piece, however, let them be that
a) you should cut down on meat and dairy as much as possible and
b) you should eat the food that you buy.

If we all made these two simple rules a priority when it comes to which food we choose to buy, we could massively cut emissions of CO2, methane and nitrous oxide. In the process, we would also increase the land available for crop production, forests, wetlands and renewable energy projects. Plus, we would save a whole lot of money and water.

What are you waiting for?

Carbon Neutral Lent

Hello and welcome to Carbon Neutral Lent! This year, CNL is joining forces with Preserve Ireland and Small Change to bring you a series of podcasts, blog posts, resources and events that will help you to measure your carbon footprint this lent and find out which areas you can improve on. Each week, we’ll be covering a topic like ‘transport’ or ‘food’ and identifying which options are best or worst for the climate. Below is a free downloadable tool created by CNL’s Darragh Wynne which will help you keep track of your carbon in a way that is detailed enough to be accurate, but still simple enough to be doable.

Hello and welcome to Carbon Neutral Lent! This year, CNL is joining forces with Preserve Ireland and Small Change to bring you a series of podcasts, blog posts, resources and events that will help you to measure your carbon footprint this lent and find out which areas you can improve on. Every fortnight, we’ll be tackling a different topic in the events, podcast and blog posts. The four topics will be transport, electricity, heating and food.

Below is a free downloadable tool created by CNL founder Darragh Wynne which will help you keep track of your carbon in a way that is detailed enough to be accurate, but still simple enough to be doable. Thank you to Ellen Hegarty for the Irish version of the tracker!

“For people who want to take climate action but don’t know where to start, this is a great way to dip your toe in. Climate change is such a huge problem that it makes it difficult to stay motivated to make small changes, especially when you don’t even know how much of a difference it’s making. With our spreadsheet, you answer a few questions about electricity, heating, transport and food at the end of each week. It calculates your carbon footprint. You can make a change for the next week and see how much it brings your footprint down” – Darragh Wynne

FAQs

Does this carbon tracker give me my entire carbon footprint?

No. Most things we spend money on have a carbon footprint such as clothes, electronics. So do more abstract things like a Netflix subscription, a mortgage and the taxes we pay. By choosing electricity, heating, transport and food, we selected 4 areas where people can realistically reduce their footprint over the course of 7 weeks.

How accurate is it?

Accuracy varies across categories. For example, if you keep track of the amount of petrol you bought for your car, it can give you a very accurate reading of those emissions. For food, it’s based off the average footprint for different types of diets so the person’s actual footprint may differ from the measured one.

If it’s not 100% accurate, what’s the point?

Pedometers are not 100% accurate in measuring steps or calories burned but they are still useful to give people an understanding of general exercise trends and something to work towards. The carbon tracker will still be able to show you broad trends of your emissions and show you where you can
make reductions.

Do I have to go vegan, cycle everywhere and sit in the cold and dark at home to do this?

No. You don’t have to change anything about your lifestyle if you don’t want to. You can just use it to learn about your current emissions if you wish.

How is it Carbon Neutral?

At the end of Lent, when you see what your total emissions are, you have the option to contribute to an offsetting project.

How long does it take to use the tracker?

You answer a few questions before Lent starts and then answer around 10 questions at the end of each week.

Do I have to do all of it all the time?

No. You can just do one section if you wish and put as much or as little effort in as you want.

Who has access to my information?

Nobody. Once you download the tracker, only you will see the information.

Do I have to be religious to take part?

No. The project materials and events have no religious connotations other than using the concept of Lent itself.

Do I have to do complicated calculations?

No, you just have to check your electricity meter, gas meter, estimate how far you’ve travelled on public transport etc., put that into the spreadsheet and it calculates your footprint.

Can I use the spreadsheet for a full family?

Unfortunately, the current design takes account of just 1 person’s footprint.

If you have any further questions, please contact us on Facebook or Twitter.

Carbon Neutral Lent: Individual and Systemic Action

How do we solve climate change? Do we eat less meat? Turn off the lights? Fly less? ‘No!’, I hear you say, ‘we need systemic action!’ To a large extent this is true, but as with all things related to climate change, it is not quite so simple. In this piece, I will be playing devil’s advocate and putting forward some of the arguments for why individual action is also important. Please do not take this to mean that I am a puppet of the corporations.

How do we solve climate change? Do we eat less meat? Turn off the lights? Fly less? ‘No!’, I hear you say, ‘we need systemic action!’ To a large extent this is true, but as with all things related to climate change, it is not quite so simple. In this piece, I will be playing devil’s advocate and putting forward some of the arguments for why individual action is also important. Please do not take this to mean that I am a puppet of the corporations.

Depending on who you ask, climate change is a policy problem, an engineering problem, a communications problem, an ethical problem; the list goes on. At its heart, however, it is a physical problem. Carbon is carbon. Climate change does not care about fairness. It will react to the quantity of greenhouse gases which are cumulatively released into the atmosphere, regardless of whether those emissions come from Exxon Mobil or from your meat, lights and planes.

The Guardian recently reported that just 20 companies are responsible for a third of all emissions since 1965. Those numbers can easily make one feel that individual action is a fool’s errand. Surely we can just shut down these companies and we’ll be fine? Again, it is somewhat more complicated than that. What does it mean for a company to be ‘responsible’ for emissions? Those who read past the headline of that Guardian article will have seen that while 10% of those emissions came from the extraction and transport of the fossil fuels, 90% of the emissions came from us, the consumer, burning the fuel for energy. The fossil fuel industry facilitates the burning of fossil fuels but we are the ones to pull the trigger.

Would these companies have produced those emissions if there was no one there to buy their oil and coal? Even now, would they be raking in the cash if we didn’t need their fuel for our cars or their energy for our homes? If there’s a market for it, then someone’s selling. If there’s no market for it, it stays in the ground where it belongs. That’s capitalism. Supply and demand. Don’t worry, I don’t like it either.

Of course, petrochemical companies like Shell do bear a disproportionate share of the blame, not least because they have between them spent vast sums of money trying to obscure the facts about climate change by funding right-wing think tanks, factually inaccurate media campaigns and the ‘research’ of a select few ethically suspect scientists. Think of the solar panels they could have built with that money.

Another major consideration is the massive gap in per capita emissions between the developed and developing world. There is a huge number of people in the developing world who emit next to nothing. The average emissions for the group of 47 countries categorised by the UN as ‘Least Developed Countries’ (LDCs) is 0.3 tonnes per person per year. The average for the rich 35 ‘Organisation for Economic Co-operation and Development’ (OECD) countries is 9.6 tonnes. That’s one hell of a difference.

The difference becomes even more stark when you look at individual nations. Per capita, the average annual carbon emissions in the US are about 20 metric tonnes. Burundi, on the other hand, are listed by the ‘World Bank’ as emitting 0.0 tonnes per person per year. In my view, there is no possible argument to be made that could justify that level of inequality.  

The fossil fuel industry is particularly culpable, yes, but so are normal people in the developed world. Our vast over-consumption precludes the possibility of an equitable redistribution of resources to the global south. We have gained a massive advantage over the developing world through colonialism and the burning of fossil fuels. We must now right those wrongs by fighting to restore some semblance of global equality. Perhaps that means sacrificing some of the things that we only have as a result of exploitation.

If we don’t reduce our individual footprints in the developed world, the very act of pulling people out of poverty in the developing world will lead to incredibly dangerous levels of emissions. The question is whether we should ask the rich kids to stop eating beef or ask the poor kids to stop eating at all. I know which seems fairer and more ethical to me.

Don’t get me wrong, individual action is not enough by itself. Not by a long shot. We do need systemic change. Among other things, we need governments to build renewable energy infrastructure and provide funding to retrofit houses. We need them to expand and green public transport, impose quotas on cattle herds, set targets for reforestation and protect marine habitats. Unfortunately, this all takes time that we don’t have. Especially at the pace we are going at. Again, climate change is a physical problem. While we argue over the wording of a document, carbon is accumulating in the atmosphere faster each year. Climate waits for no man.

While we fight for systemic change, we must also reduce our individual consumption in the developed world if we are to give people in the developing world time to improve their socioeconomic conditions. If you have quit the meat or stopped flying, that is a good thing. Your efforts have not been for nothing. You have reduced the global average per capita emissions, giving the developing world more time to reduce poverty before it has to start worrying about the resulting emissions.

In philosophy, a distinction is often drawn between necessity and sufficiency. While bread is necessary for a sandwich, for example, it is not sufficient. You also need a filling. I would argue that while both individual and systemic action are necessary in the fight against climate change, neither are sufficient in their own right. Systemic change takes time that we don’t have, and individual change does not give us the emissions reductions that we need. Together, they might have a shot.

In the developed world, we must fight the powers that be and force widespread systemic change. That is the most important thing we can do. In the meantime, however, we must also reduce our own footprints. That is the only way I can see for us to achieve a truly just transition. We cannot be expected to live carbon-free lives in a carbon-rich system. We can, however, be expected to try. Why? Because the alternative is so much worse.

For Peat’s Sake: Bogs, Bord na Móna and the Climate

Bogs and Irish culture have been intimately linked for centuries, cropping up in everything from our traditional songs to the work of our most beloved poets. They have provided us with energy, clean water, jobs and a home for our wildlife. Globally, degraded peatlands account for a quarter of all carbon emissions from the land-use sector despite covering only 3% of the land. They also contain 30% of the world’s soil carbon; that’s twice as much carbon as is stored in all the world’s forests. It is estimated that more than 80% of Irish peatlands have been damaged in some way.

My skull hibernated
in the wet nest of my hair.

Which they robbed.
I was barbered
and stripped
by a turfcutter’s spade

who veiled me again
and packed coomb softly
between the stone jambs
at my head and my feet.

-Seamus Heaney

Abbeyleix bog in Co. Laois is a rare example of a bog that has not been utterly destroyed by industrial peat extraction. Many of the peatlands I saw from my window on the bus down here were not so lucky. The barren and lifeless landscape of bogs that have been stripped bare is a common sight in the Irish midlands, and it is becoming more common every day. Abbeyleix very nearly met the same fate back in 2000. If it were not for the dedication and quick thinking of the community, the thousands of species in the bog would be homeless and hundreds of thousands of tonnes more carbon would be in the atmosphere instead of in the ground where it belongs. 

Bogs and Irish culture have been intimately linked for centuries, cropping up in everything from our traditional songs to the work of our most beloved poets. They have provided us with energy, clean water, jobs and a home for our wildlife. Globally, degraded peatlands account for a quarter of all carbon emissions from the land-use sector despite covering only 3% of the land. They also contain 30% of the world’s soil carbon; that’s twice as much carbon as is stored in all the world’s forests. It is estimated that more than 80% of Irish peatlands have been damaged in some way.

Peat forms because the water-logged and acidic conditions of a bog significantly slow the decomposition of bog mosses, also called sphagnum, causing a build-up of organic matter. Emissions from peatlands don’t just come from the burning of the peat; they also come from drainage. When the level of water in a bog (known as the water table) is reduced, this exposes more of the peat to the air. In this dry, oxygen-rich environment, the peat decomposes, releasing all that carbon back into the atmosphere.

Despite owning only 7% of Irish peatlands, the organisation primarily responsible for the industrial extraction of Irish peat is Bord na Móna, a semi-state company which was set up by the government in 1934 under the name ‘the Turf Development Board’. Since the inception of Bord na Móna proper in 1946, the company has been responsible for the development of 80,000 hectares of Irish bogs. Back in 2016, Bord na Móna rebranded themselves with the slogan ‘Naturally Driven’ and tried to position themselves as environmental stewards. The journalist John Gibbons called this campaign “profoundly, irredeemably dishonest” and “an exercise in cynicism”. He also quoted An Taisce as saying “We suggest they drop their new ‘Naturally Driven’ slogan and replace it with the phrase ‘Profit Driven’. Then Bord na Móna would at least be able to sell its business plan with a straight face”.

Abbeyleix bog had been owned by the De Vesci family since the early 1700s. In 1987, Tom De Vesci, who had previously attempted to have the bog designated as a heritage site, was coerced by Bord na Móna into selling the bog. “I was approached many times by Bord na Móna to sell it after my father died in 1983 and I always refused” Tom said in an interview. “But eventually I was informed that Bord na Móna would be taking ownership via a compulsory purchase order at a somewhat lower level of compensation than I would get if I sold it ‘voluntarily’ a few weeks earlier”. In 1989, Bord na Móna cut 66km of drains into the bog in preparation for future peat harvesting.

On Thursday, 20th of July 2000, Chris Uys, a member of the Heritage Company and now development officer for the Community Wetlands Forum, met with Jimmy Dooley of Bord na Móna to discuss plans for a walkway through the bog and to inform Jimmy of concerns regarding its development. The following day, locals noticed unfamiliar pieces of machinery on the bog, which had been delivered to the site by Bord na Móna overnight. Chris Uys raised the alarm in the community that development of the bog was about to begin. That Sunday, local resident Gary O’Keeffe parked a crane in the entrance to the bog under the guise that it had broken down during a bird-watching session in order to keep the rest of the machines out of the bog. By Monday morning, at least 50 people had gathered at the entrance to protest the development, with numbers swelling to around 100 by lunchtime.

After much pressure from the community, Bord na Móna finally agreed to carry out an Environmental Impact Assessment (EIA) in April of 2001. They found that the Abbeyleix site was of “little or no conservation value”, an assessment which both the Abbeyleix community and the Irish Peatlands Conservation Council (IPCC) considered “incomplete and inaccurate”. An ecologist by the name of Doug McMillan was invited to carry out an independent assessment of the bog. Having only surveyed 20% of the land, Doug had already found over 500 species, and could reasonably conclude that the bog was home to thousands of species, including a butterfly which was protected by the EU. If Bord na Móna really had carried out an EIA, they had either done a poor job or they had lied about the results.

In 2002, An Bord Pleanála found that Abbeyleix bog was not exempted from the requirement for planning permission. This was the first time in Irish history that a peat development went through the planning permission process. Bord na Móna, in true form, took high court action against both the Laois County Council and An Bord Pleanála. In 2008, an ecologist by the name of Jim Ryan carried out another survey, finding that only 1% of the raised bog was still intact and forming peat. I am stunned when Chris tells me that, like in Abbeyleix, only 1% of active raised bog in the country remains. In other words, we have degraded 99% of carbon-rich raised bog nationwide through drainage and peat extraction. In April of 2009, more than 20 years after they were cut, work began to block the drains in Abbeyleix. In April of 2012, the Abbeyleix community signed a lease agreement which meant that the bog would be in their control for the next 50 years, provided that it was primarily used for habitat restoration. David had beaten Goliath.

I met with Chris Uys in the lobby of the picturesque ‘Abbeyleix Manor Hotel’ on the outskirts of the bog. He has brought with him a textbook on peatlands and a folder packed to the brim with documents. When I ask him why peatlands are so important for biodiversity, he tells me that “the interesting thing about the biodiversity in peatlands is that the combination of plants and… the way they interact has a wider role to play than just purely the biodiversity that is there because it helps to retain water content, it has to do with carbon sequestration, and it supports other ecosystems”. He tells me that bogs are very important for breeding birds and that they link different ecosystems together like a natural corridor.

A walk through Abbeyleix bog feels like a walk through the history of this country. There is a calm here that soothes your aching bones like a hot bath. This is what is known rather robotically as a ‘cultural service’; one of many ‘ecosystem services’ provided by bogs like Abbeyleix. These somewhat stomach-churning terms are used by some environmentalists as an attempt to reframe the ecological crisis we have caused in the parlance of capitalism and thus convince business and industry to act. Gazing out over the endless beauty of this ancient landscape, I can’t help but think that it is downright insane to try and put a price on something that existed for so very long before our self-centred species ever dreamed up the concept of money.

Back in 1997, peat fires forced both Singapore and Kuala Lumpur to close their airports for several days. The peat in question was burning over 1,000km away in Indonesia. Scientists have estimated that the CO2 released during this one fire was equivalent to 13-40% of the mean annual global emissions from fossil fuels. The carbon is not the only issue; the vast quantities of smoke released by the fire had serious effects on health, with studies showing decreased lung function in children who were present during the event. According to a study in Archives of Environmental Health, 527 people died in 2 months as a result of the smoke, with 58,000 cases of bronchitis and 1 and a half million cases of acute respiratory infection reported.  Fires like this have happened periodically over the last few decades, with one 2010 event in Russia leading to carbon monoxide levels in the capital that were 6 times the maximum acceptable level.

To the Irish, this all may seem like a distant threat, but were the Wicklow bogs to catch fire, the prevailing wind would carry all that lethal smoke right into the heart of Dublin. John Reilly, the head of the renewable energy branch of Bord na Mona, told me in an interview that “the biggest risk of wildfires is not posed by active peat production areas on drained peatlands, but rather the risk is high on virgin peatlands which are generally covered in vegetation such as gorse and heather”. He said that the major concern when it comes to fires was actually stockpiles of cut peat.

DCU-based peatlands expert John Connolly tells a slightly different story. “In one way he is right that the risk of fire (i.e. fire starting) on a drained industrial peatland may be less if all vegetation is removed. However, a lightning strike could start a fire and in that case drained peatlands are much more vulnerable than virgin (i.e. wet) peatlands”. Dr Connolly sent me a link to a 2016 study in ‘Nature’ which states that “the high burn severity of drained tropical/temperate peatland fires suggests that large-scale peatland drainage and mining in northern peatlands over the last century has also likely made managed northern peatlands more vulnerable to wildfire than natural (undrained) peatlands”. While there is an element of truth in what John Reilly told me, then, it seems that it was not the whole truth.

In 2006, an area of dried and cut peat the same size as Abbeyleix bog caught fire in the Irish midlands, leading to the evacuation of several Longford residents. While it was the stockpiles that caught fire rather than a bog itself, the incident shows how damaging peat fires can be. Smoke from the fire travelled 10 miles north. One Rooskey resident who had suffered from respiratory problems in the past was quoted in the Irish Times as saying “at the moment I am closing my windows and hope that will be enough”. A 2002 study of the Indonesian haze disaster, however, suggests that staying indoors only gets you so far in a situation like this.

They found that indoor concentrations of particulate matter were about half of what they were outside. That was a form of particulate matter known as PM10 because the individual particles are 10 micrometers or smaller in diameter. They could not find any difference, however, in the concentrations of fine particulate matter, or PM2.5, which are particles 2.5 micrometers or less. The researchers said that “perhaps the size of particulates was so small as to travel and intrude into any space; the concentration of pollutants was extremely high, and the indoor environments of buildings in Indonesia were rarely exempt from these pollutants”.

When asked about Mr Reilly’s claim that the presence of vegetation increases the risk of wildfires, Chris Uys replies that “from that point of view yes, that is so. But if you are talking degraded peatlands, degraded means that you have dried. For me, there is a higher risk… when the peat below the surface is dry and there is an ignition of anything above, it starts to smoulder underground as well”. Chris tells me that Abbeyleix has suffered from this very problem; “we had a fire at one stage, and you could just see smoke. On nearer investigation it was actually starting to simmer underground. It just keeps going”. While vegetation fires on the surface are manageable, the dried peat below can keep burning for a very long time and release a lot of carbon before it is extinguished.

Thankfully, Bord na Móna have been trying to get out of the peat business for over a decade, with over half of their revenue coming from non-peat-related activities in 2019. John Reilly, who has been doing excellent work building renewable energy infrastructure with the company, tells me that “Bord na Móna developed the first commercial wind farm in Ireland back in 1992, on a joint venture basis with the ESB, so we have some considerable experience in the sector”. They also announced last year that they were closing 17 of their active bogs, with the remaining 45 bogs to be closed within 7 years. However, some have said that this amounts to greenwashing, since the planned closures are of bogs that have been exhausted and are no longer profitable. As UCD peatlands expert Dr Florence Renou-Wilson put it in an interview with the Guardian, ““It’s a bit of a smokescreen. It’s all revenue-driven… they’re are all done and dusted”.

Bord na Móna is not the only company extracting Irish peat, though it is the largest. A company called Harte Peat has come under fire recently for carrying out large-scale peat extraction without a license in the Derrycrave bog in Westmeath. Photos released last year by ‘Friends of the Irish Environment’ showed that Harte had been cutting the peat right down to the mineral layer below, leaving almost no possibility of recovery. Peat that had formed at a rate of about 1 millimetre a year until it was several meters thick was stripped down to the bone in the geological blink of an eye, depriving animals of their homes and future humans of their right to security. This tragedy has played out countless times across the country over generations, leaving us with little more than a silhouette of the beautiful and important landscapes which once dominated the Irish midlands.

The degradation of Ireland’s peatlands doesn’t just threaten our health, it also threatens our wallets. New regulations require that we start reporting the emissions from our peatlands to the EU from 2021. Ireland is already facing hundreds of millions of euro in fines for failing to meet our emissions targets and this will bring us further off target. Chris tells me that “We were fined 150 million for this already… and we’re gonna be fined again until these people stop… Bord na Móna don’t get fined. It’s the government that gets fined. They merrily go on. They can go on for another 30 years if the government allow them. But we get that fine”.

When asked to what extent Ireland will be able to cope with these changes to EU law, Dr Connolly tells me that “the government and the EPA have made some investments in funding research and research infrastructure over the past few years. These investments will allow scientists to provide some of the detail that is required in the legislation, however much more investment is needed in research, infrastructure and rewetting/restoration as peatlands in Ireland are severely degraded and emissions are unknown in many areas”. But does this mean more fines for the Irish government? “It depends. If peatland emissions can be reduced to zero by the start of the 2026 reporting period, then no. However, current emissions are estimated to be about 11 million tonnes of CO2 … The reduction of these emissions to zero over the next six years will be very challenging.”

I ask Chris if Abbeyleix bog became a net source of emissions following the drainage and, if so, if it is back to being a net sink. “Possibly we are not a net sink yet… the higher the water level the less carbon emissions,” he tells me. “Then it gets to a point where it changes and it starts to give out methane emissions. There is a sweet spot where you have the least emissions. The other problem with degraded peatlands is that if you don’t have vegetation formation, (sphagnum), then it does not negate the methane”. The blocking of the drains has not been in vain, however. Whereas only 1% of the active raised bog remained in 2009, Chris reckons that as much as 10-15% has recovered in the intervening decade.

It takes time for peatlands to regenerate; all the more reason to block as many drains as we can as soon as we can. The light is beginning to fade from the grey clouds overhead as I slip and slide across the wet wooden walkways. The first few drops of rain begin to fall once more on the mounds and ditches of Abbeyleix. This beautiful landscape serves as both a cautionary tale and a beacon of hope. It showcases the terrible consequences of degrading our bogs, but is also a reminder that with elbow-grease, dedication and time we can undo some of the wrongs we have inflicted on the natural world.

Short Change: The Vampire in your Living Room

Printers, microwaves, chargers, DVD players, desktop computers and many other devices all drain energy when turned off or not in use. This drain is known as ‘vampire’ or ‘standby’ power and is responsible for a huge amount of energy loss each year. Since that energy is largely generated by burning fossil fuels, vampire power accelerates the rate of global warming as well as raising your electricity bill.

TVs, Printers, microwaves, chargers, DVD players, desktop computers and many other devices all drain energy when turned off or not in use. This drain is known as ‘vampire’ or ‘standby’ power and is responsible for a huge amount of energy loss each year. Since that energy is largely generated by burning fossil fuels, vampire power accelerates the rate of global warming as well as raising your electricity bill.

According to UC Berkeley, Americans lose 200-400 terawatt hours per year to vampire power; that’s enough electricity to power all of Italy! That is quite something, given that the US population is only about 5 times larger than that of Italy. Some investigations into vampire power have found that many appliances actually use more energy during the time when they are idle than they do when they are in use. One survey of office buildings in Thailand found that 90% of the electricity used by printers, copiers and fax machines was vampire power. In other words, it would cost 10 times less money and emissions to run these devices if they were simply unplugged when not in use. Another study found that 80% of electricity used by video recorders in Australia was used in standby mode.

So how can you identify an energy vampire? Unfortunately it is not as simple as throwing holy water at your devices. There are, however, some good rules of thumb. Anything that can be turned on with a remote control is likely an energy vampire, since the sensor which picks up the signal must remain on 24/7. Another likely culprit is any device, like microwaves or radios, which constantly displays the time on a screen. There are, however, many other devices which consume power when not in use but show no external signs of doing so.

This issue negatively affects both the bank accounts of the average consumer and the global effort to combat climate change. Compared to dismantling the fossil fuel industry or convincing everyone to stop eating meat, this is a relatively easy fix. One way to slay vampire power is on the side of the consumer. If you buy a couple of extension cords with on/off switches, you can easily cut power to things like TVs and printers when they are not in use. Try keeping your remote control beside the extension cord so that you can flip the switch when you go to pick it up. There is, however, only so much we can do.

The more promising solution to vampire power is technical and is the responsibility of electronics manufacturers. For example, energy-saving devices can be built which automatically cut power when not in use for a certain amount of time. Another example would be phone or laptop chargers which cut the power when the device is fully charged or unplugged. It is estimated that changes to the power circuits of devices could reduce vampire power by as much as 90%, so manufacturers have the power to largely fix this issue all by themselves. One problem with this is that consumers are more likely to buy, for example, a TV which can be turned on remotely, so manufacturers have an incentive to keep producing goods which drain power when not in use.

Cutting vampire power would allow us to supply many more people with electricity without a corresponding increase in CO2 emissions. Improvements in efficiency such as this will be necessary to fight climate change, but must occur in tandem with a number of other tactics, including a conscious effort to reduce energy consumption across the board. It is the responsibility of manufacturers and consumers alike (but mainly manufacturers) to be careful about how much power is being used, and to identify and eliminate any power drain which is not absolutely necessary.

A Salt and Battery: How to Store Sunlight

It has become common knowledge that humanity needs to change the sources of our energy at an unprecedented rate if we are to avoid the worst effects of climate change. Renewable energy systems are the most promising means available to reduce our impact on the earth without giving up the comforts of readily available electricity. However, an issue with some renewables like wind and solar is that the energy is only available sometimes. There is no solar power without sunlight and no wind power without wind. In this article I’ll be looking at a type of solar power plant which avoids this problem in a most ingenious way.

It has become common knowledge that humanity needs to change the sources of our energy at an unprecedented rate if we are to avoid the worst effects of climate change. Renewable energy systems are the most promising means available to reduce our impact on the earth without giving up the comforts of readily available electricity. However, an issue with some renewables like wind and solar is that the energy is only available sometimes. There is no solar power without sunlight and no wind power without wind. In this article I’ll be looking at a type of solar power plant which avoids this problem in a most ingenious way.

One way to solve the storage problem might be to connect all our renewable energy infrastructure to a massive international grid. What this would achieve is that excess solar power from a hot day in San Francisco could be used to power Beijing in the middle of the night, or excess wind power from blustery Ireland could be used to power gustless Brazil. This is a very good idea in theory but it has its drawbacks. Consider the sheer quantities of copper and rubber required to connect every solar and wind farm in the world to every home or business which requires their energy. And what about the time it would take for such an ambitious project to reach completion? Climate change is already here and will soon become entirely irreversible without swift and decisive action.  

So how else can we store and distribute renewable energy? The answer seems very simple; build a battery. If you need solar power at night, why not store the electricity generated during the day rather than transporting it to the other side of the world? This, however, is far easier said than done. The current generation of lead-acid (car) and lithium-ion (phone) batteries are remarkable works of engineering. They are not, however, up to the task of storing the amount of energy we need them to store without seriously depleting natural resources like rare-earth metals. We are badly in need of a breakthrough. Lead-acid batteries have been working on the same basic principle since their invention by Gaston Plante in 1859 and are still one of the most widely used rechargeable batteries on the market. In this article, I’ll be looking at a new way of storing solar power that may revolutionise the energy grid of the future.

‘Concentrating solar power’ (CSP) plants have been providing more and more people with electricity ever since they were first built on an industrial scale back in the 1980s. The difference between these solar plants and standard photovoltaic (PV) plants is the way in which the electricity is generated. In PV panels, solar energy is converted directly into electricity. In CSP, the heat energy from the sun is used to make steam which spins a turbine and this is what generates the electricity. This is roughly the same process used to generate power from coal, oil, natural gas, nuclear fission, incineration, plasma gasification and thermal wave power so the proof of concept is definitely there. The major advantage of CSP over PV is storage. If your plant is generating electricity directly from the sun, you need somewhere to store the electricity when it is not needed; a battery. If you are generating electricity from heat, on the other hand, you can store the sun’s energy in something called a heat transfer fluid (HTF). This is any fluid, like mineral oil, which retains heat well over time.

The most basic and widely used form of CSP is known as a ‘parabolic trough power plant’ (PTPP). The first documented use of this technology was Auguste Mouchout’s ‘solar steam engine’ in 1866. In PTPPs, mirrors focus sunlight onto tubes which contain a HTF. The mirrors are curved like those you might see in a house of fun and are arranged in troughs with the tubes of HTF running down the centre. Picture a hot dog but with mirrors rather than bread and tubes rather than a highly questionable meat-like substance. The hot HTF is transported through the tubes to a series of heat exchangers where it evaporates water to spin a steam turbine. If electricity is not needed at that moment, the hot HTF can instead be transported to a storage chamber from which it can be removed when the need arises for electricity. Once the heat has been converted into electricity, the HTF returns to the troughs to begin the process again. 97% of the CSP plants currently producing energy are PTPPs.

Parabolic mirror with tubes of HTF

PTPPs, however, are not the only type of CSP available. Back in 2011, a company called Solar Reserve received a loan of $737 million for a project called ‘Crescent Dunes’; a massive solar plant in the Nevada desert which can provide electricity to 75,000 homes, night and day. Crescent Dunes is what is known as a ‘power tower’ CSP plant. Power towers operate on the same basic principle as PTPPs, but rather than each mirror focusing sunlight onto a different section of tubing, all the sunlight is concentrated on one central tower. Focusing all the sunlight on one place means that the plant operates at much higher temperatures, greatly increasing efficiency. This design also does not require expensive curved mirrors like PTPPs. The plant instead uses ‘heliostats’, flat mirrors which track the sun and change their position to maximise the amount of sunlight hitting the tower.

The real genius of the project is what is contained within the tower. Inside the tower is a mixture of potassium nitrate and sodium nitrate; also known as salt! More specifically, saltpeter. Sodium nitrate is currently used to preserve certain foods and is the reason bacon goes green if left uneaten for too long. In power towers, the salt is heated by the sunlight reflected off the mirrors until it is molten and packed to the brim with energy. The salt is cheap and extremely good at retaining heat, acting as a kind of thermal battery. This means that power towers can continue to provide energy long after the sun has stopped shining. What’s more, salt can be used at much higher temperatures than any of its competitors. One issue with using molten salt is that it can freeze in the pipes. For this reason, new types of solar salt are being developed which have much lower melting points.

One apparent issue with this design is the effect on birds. If you have thousands of mirrors concentrating the blazing sunlight of the desert into one spot, any bird that is unfortunate enough to fly through the firing line could be killed by direct heat. There have even been reports of birds bursting into flames mid-air then crashing down to earth like meteorites. We have decimated insect populations around the world, depriving many birds of their food source, and scientists estimate that between 100 million and 1 billion birds die each year by flying into buildings in the US alone. Given these facts, it could be argued that bird deaths are an unacceptable side-effect of power towers However, recent studies of bird deaths in a number of power towers have shown that initial estimates may have been wildly exaggerated.

Back in 2014, a conservationist by the name of Shawn Smallwood very roughly estimated that Ivanpah, the world’s largest CSP plant, could be killing 28,380 birds per year. That number or anything close to it would indeed be unacceptable. However, at the same time that Smallwood made his estimate, a large-scale study was being carried out at the Ivanpah plant to see just how many birds were actually dying. After 8,935 person hours and 281 dog-hours of searching, the team found just 695 dead birds and 35 dead bats. Adjusting for the bodies that weren’t found or were carried off by scavengers, the team estimated that around 3,500 birds had died in the plant’s grounds over the course of the year. They estimated that only around 1,500 of those deaths were caused by birds flying into the tower or being burned by the mirrors. That’s nearly twenty times fewer deaths than the number predicted by Smallwood which tarnished the plant’s name in the media. The other 2,000 deaths were listed as ‘unknown causes’ which could have nothing to do with the power plant at all. To put these numbers in context, it is estimated that in the US alone, domestic cats kill 1.3 to 4 billion birds per year.

Another consideration is that the negative effects suffered by birds if climate change goes unchecked greatly outweigh the effects they will suffer from concentrated solar, particularly given the recent assessments which show that the damage to bird populations from CSP is far less severe than was previously thought. There is certainly merit to this argument. We need to develop and roll out effective energy alternatives very soon or else birds, mammals, fish and insects alike will all suffer the worst effects of climate change.

It seems that CSP plants are getting better and better at mitigating the risk to bird populations. Each year the number of deaths goes down as adjustments are made to what is still a very new technology. It may seem cold and calculated to talk of flaming birds like mere teething pains, but we need to make these kinds of hard decisions if we are to ensure that we leave a habitable planet to future generations of people and birds alike.  

In PTPPs, the sunlight is concentrated on a massive number of different points which are at ground level, meaning that the threat to birds is greatly reduced. However, there are a number of drawbacks. First and perhaps most important is that power towers are far more efficient at converting heat into electricity. This is partly due to the higher operating temperatures but is also affected by the surface area on which heat-loss can occur. If you concentrate all the sunlight onto one point, there is a much smaller area in which heat can radiate out into the atmosphere. Another major factor is how much of resources like oil, metal, water or salt are required for the process. In power towers, you only need enough HTF at any given moment to fill the relatively small space at the top of the tower. If you are constantly heating several kilometres of pipes, on the other hand, you will lose a lot more heat to radiation and use a lot more resources in the process.

Like many sustainable technologies, there are a number of advantages and disadvantages to CSP. When it comes to large-scale energy production, CSP seems to have PV beat, but If you are just looking to power your own house, PV rooftop solar panels are far easier to install and provide you with a personal energy supply. In the US, you can also make money from producing excess energy for the grid, with the UK set to follow suit in January of 2020 after much controversy and tomfoolery on the part of the government. Right now, good PV panels convert roughly 20% of sunlight into electricity but researchers think that number could theoretically be brought as high as 80% with a few breakthroughs. When it comes to deciding which type of CSP is best, I will leave that up to you.

Power towers are far more efficient and require far fewer resources to generate the same amount of energy. Despite initial exaggerations, however, power towers do pose a threat to birds, particularly if new plants keep being built. What’s more, they do not have a proven track record as long as their rival. What is certain is that if we do not transition to cleaner forms of energy ASAP, the consequences will be far more severe than most people think.

We will see an acceleration of biodiversity loss and an increase in the frequency and severity of natural disasters like hurricanes and floods. Large areas of land will become inarable, greatly reducing our food supply, and hundreds of millions of people will be exposed to extended periods of drought. Depending on which predictions are correct, the emissions reductions brought about by technologies like CSP could easily end up saving more lives than were lost to the holocaust. If that is not worth investing in, then I truly don’t know what is.

Gas in the Tank: How Methane could be the Future of Fuel

New research has shown that it may be possible for us to convert methane into fuel cheaply, quickly and on a large scale. The key to this energy revolution will be exploiting a type of bacteria known as methanotrophs. Methanotrophs are incredibly abundant in nature. They account for 8% of all heterotrophs on earth (organisms like us that have to ‘eat’ rather than photosynthesising their food). These incredible bacteria are capable of converting methane into methanol very easily, a process that has been referred to as the holy grail of modern chemistry. If we could perform this conversion as easily as methanotrophs, we could seriously cut down our GHG emissions.

Almost all the talk of climate change in the media focuses on CO2, as it is the most abundant greenhouse gas (GHG) on earth. It is not, however, the most potent. Not by a long shot. Over a 20-year period, methane is around 86 times more effective at trapping heat than CO2. This is worrying since humans have caused, in just 300 years, an increase in global methane from 715 parts per billion to 1774 parts per billion, the highest level in 650,000 years. That works out to about a fifth of all global warming, making methane the second most significant GHG on earth. Roughly 60% of all atmospheric methane is the result of human practices like large-scale animal agriculture and poorly-managed landfills.

Before I get going, I would like to acknowledge the paper “Biotechnological conversion of methane to methanol: evaluation of progress and potential” as it proved to be an extremely useful research source on this topic.

New research has shown that it may be possible for us to convert methane into fuel cheaply, quickly and on a large scale. The key to this energy revolution will be exploiting a type of bacteria known as methanotrophs. Methanotrophs are incredibly abundant in nature. They account for 8% of all heterotrophs on earth (organisms like us that have to ‘eat’ rather than photosynthesising their food). Methanotrophs were first identified way back in 1906 but in the 1970s, 100 types were isolated, characterised and compared in a landmark study. These incredible bacteria are capable of converting methane into methanol very easily, a process that has been referred to as the holy grail of modern chemistry. If we could perform this conversion as easily as methanotrophs, we could seriously cut down our GHG emissions.

In May of 2019, researchers at Northwestern University identified the cofactor involved in catalysing the conversion of methane to methanol, providing a huge step forward in our understanding of how methanotrophs carry out this incredible process. Methanotrophs are known to carry out the conversion using an enzyme called methane monooxygenase (MMO), but the researchers have now identified the copper ion which accelerates this process and the site at which that copper ion is bound.

Methanol is an energy-rich fuel that can be used for everything from automobiles to electricity generation. In fact, methanol can be put straight into a standard internal combustion engine, meaning that we would not need to design new types of engines in order to make the switch. Burning methanol in an engine produces 20-25% less GHGs than burning petrol, but even these emissions are cancelled out by the fact that methane is removed from the atmosphere to produce the fuel. In other words, it’s already better than burning petrol, and the fact that it removes methane makes it better still. Remember, methane is far more potent than CO2 as a GHG. By converting methane to methanol then using the methanol as fuel, you are essentially converting methane to CO2, which causes much less global warming. The conversion happens at a ratio of 1:1, meaning that simply converting methane to CO2 would result in a serious decline in GHGs in the short term. In addition, the energy you get from burning the methanol means that you don’t have to burn as many fossil fuels, further lowering the carbon footprint of the process.

Right now, we are able to convert methane to methanol. In fact, we have been doing this on a relatively large scale for quite some time now. In 2015, the global demand for methanol was 70 megatons. The difference between current methods of converting methane to methanol and using methanotrophs instead is the temperature and pressure under which the reaction can be carried out. Current methods require temperatures of 900 degrees Celsius and pressures of 3 megapascals. In other words, that is roughly the same temperature as lava and roughly the same pressure that is exerted on a submarine 1,000 feet below the sea. Methanotrophs can perform the same conversion at room temperature and atmospheric pressure (the normal pressure at sea-level). This is known as ‘ambient conditions’ and describes the temperature and pressure wherever you are reading this article (provided you are not reading this in a volcano or a submarine).

The problem with needing extremely high temperature and pressure to perform the reaction is that it requires a lot of energy, cancelling out many of the gains made with respect to GHG emissions. That energy needs to come from somewhere and 9 times out of 10 that somewhere is fossil fuels. In addition to this, the process is currently too expensive to be economically viable, a factor that hugely influences whether or not a technology enters the mainstream. If we can harness methanotrophs’ ability to convert methane to methanol at ambient temperature and pressure, the process will become far cheaper, far quicker and far more environmentally friendly.

There is an important distinction to be made between low affinity and high affinity methanotrophs. Low affinity methanotrophs are found only where there are high concentrations of methane (more than 40 parts per million). So far, every strain of methanotroph we have isolated has been low affinity. High affinity methanotrophs, on the other hand, can perform the conversion at ambient levels of methane (less than 2 parts per million). Isolating and exploiting high affinity methanotrophs is the real holy grail, since this would allow us to convert the methane in the air all around us into fuel rather than just being able to perform the conversion in places where concentrations of methane are high.

Another way this process might reduce GHGs is by creating an incentive for oil companies to stop ‘flaring’ natural gas when exploring for oil. As you bring the oil to the surface, natural gas comes with it. To prevent pressure building up in the pipes, the gas is burned (which is why you sometimes see oil wells with flames shooting out the top). 4% of all natural gas which is extracted worldwide is flared. Using 2017 figures, that works out to 139 billion cubic meters of gas wasted every year (nearly 1 and a half trillion Kwh). That is slightly more energy than is used each year in India, a country with nearly one and a half billion people. Since natural gas is around 85% methane, development of cheap methane-methanol conversion techniques would provide an incentive to capture and store the gas rather than burning it unnecessarily and releasing huge amounts of GHGs into the atmosphere in the process. This is an example of how we can use our current knowledge of low-affinity methanotrophs to begin cutting down on emissions.

Transporting methane is currently very difficult, since it is a gas under ambient conditions. Liquids take up far less space than gases and are also far more energy-dense. By converting methane to methanol, we seriously boost how much potential energy can be carried by a single truck. By cutting down on how many trips are required to transport the same amount of energy, we also cut down on the fuel required for transportation. Efficiency gains such as this will be vital in our transition to a sustainable society if we wish to retain our current levels of comfort.

Burning methanol is also far cleaner than burning petrol, releasing half the carbon monoxide and just 1 eighth of the nitrous oxide. Over a 100-year period, nitrous oxide has a global warming potential 265-298 times greater than CO2. The reason you don’t hear as much about it in the media is that we release far less nitrous oxide into the atmosphere than we do CO2 or methane. The problem of climate change is so huge and so urgent, however, that we need to look at ways to reduce every GHG all at once by whatever means possible. An eightfold reduction in nitrous oxide from transport would go a long way.

One possible issue with this technology is that methane is only more potent than CO2 in the short term (a century or two). It could be argued that since CO2 stays in the atmosphere for thousands of years, we are simply pushing the problem back without solving it. To this I would reply that we are dangerously close right now to setting off feedback loops which would take climate change out of our hands and make the problem unsolvable. By procrastinating on this massive issue, we give ourselves time to develop technologies that can capture CO2 on a large scale as well as technologies that can provide us with clean energy. In other words, we are in desperate need of a band-aid.

Another objection might be that the process provides a financial incentive to keep fracking for natural gas when really we need to be leaving it in the ground. This objection, I think, holds more water. While burning methanol is more environmentally friendly than simply burning the natural gas, it is less environmentally friendly than not burning it at all. One way to respond to this is by arguing that it is naïve to think that we will stop extracting natural gas and oil any time soon. Global energy demand is huge and rising and these needs must be met somehow. It is better to meet them using efficient new technologies than to continue the practices that got us into this mess in the first place. In addition, if we can develop this technology to the point where we can remove atmospheric methane rather than just converting natural gas to liquid, it could actually result in negative emissions, meaning that we would be simultaneously meeting our energy needs and reducing our impact on the environment. The potential for this technology is massive.

Conversion of methane to methanol under ambient conditions and on a large scale would be a huge step forward in developing the green energy infrastructure that is required if we are to transition to a low-carbon world. I’ve said it so many times before, but it bears repeating that if we don’t make this transition very soon, the consequences will be extremely severe for humans and other animals around the globe. We are talking about a worldwide shortage of food and water, an increase in the frequency and severity of natural disasters, rising sea-levels and much more.

Climate change is happening right now all around us, from the wildfires of California to the hurricanes of Puerto Rico. How we respond in the coming years determines whether this will be a difficult century on one hand, or a complete transformation of the Earth that could last for hundreds of thousands of years on the other. So long as we can limit warming to below the levels required to trigger feedback loops, I have faith that humans can ride out the storm relatively unscathed. It is worth remembering, however, that this is the greatest challenge our species has ever undertaken. This is why the development of technologies like methane to methanol conversion is so critical and so time-sensitive. This tech will not solve the problem all by itself, but it will give us some time and breathing room to overcome the larger issue.

Shock Wave: Electricity From The Ocean

Some renewable technologies harness the vast mechanical power available from a planet that is in constant motion. Wave power generators (WPGs) are a possible energy source of the future, but how do they compare with their rivals?

First published in UCD College Tribune

Even in this futuristic world of ours, all our electricity is generated by simply spinning a turbine. The fossil fuels which are bringing us ever closer to a complete climate catastrophe are not just used to power our cars, but also to create steam which generates the electricity needed for everything from phones to lightbulbs. This is exactly the same principle employed by nuclear power plants. In both cases, fuel is used to create heat, which is used to generate electricity. There are ways, however, to generate electricity which do not require heat at all. Some renewable technologies harness the vast mechanical power available from a planet that is in constant motion. Wave power generators (WPGs) are a possible energy source of the future, but how do they compare with their rivals?

It is worth quickly comparing ocean energy and wind energy since the two are similar in a number of ways. This is why underwater turbines closely resemble those of wind farms. A major difference between the two is the potential energy contained within. Water is nearly 800 times denser than air, meaning that the same volume, travelling at the same speed, contains much more power. What this means on the practical side is that much smaller devices can produce the same yield of energy.

A major difference between WPGs and tidal power is the source of energy. Tides result from the gravitational pull of the moon dragging water up and down our shores as it passes by above us. WPGs, alternatively, find their energy source in the sun. Solar radiation does not heat the earth evenly. The air in places which receive more heat rises upwards, allowing colder air to rush in to take its place. That rushing of air is what we call wind. Since wind is the driving force behind waves, any energy that we harvest from waves comes indirectly from the heat of the sun. It is for this reason that WPGs are considered a renewable technology.

Tidal power is perhaps the most reliable source of energy on earth. Twice a day like clockwork, unimaginably vast quantities of water rush in and out of our coasts. Globally, there is as much power available from tides alone as there would be from nearly 5 and a half billion coal-burning plants. One of the problems, however, is that only a very small fraction of this energy could actually be harvested. There are only 40 or so places in the world where the difference between low and high tide is great enough to produce a worthwhile amount of power. One way that the power of the tides can be harnessed in such places is by building tidal ‘barrages’. These consist of huge dams which trap water from the rising tide, then release it slowly when the tide is low. As the water passes through the dam back into the sea, it spins a series of turbines to generate electricity.

WPGs come in a variety of forms. One very cool design that was deployed in the ocean as far back as 2004 resembles a giant sea-snake. Each segment of the snake is attached to the next by hinge joints which are connected to hydraulic rams. As the sections of the snake move back and forth over the waves, the hydraulic rams drive a series of electrical generators.

Another simple yet ingenious way of harnessing the power of waves is by using a device known as an oscillating water column (OWC). These machines consist of a hollow cylinder containing a turbine which is attached to a buoy. As the waves pass by underneath, air is forced up through the cylinder, spinning a turbine. What makes these devices truly remarkable is the special kind of turbine contained within. The so-called ‘Well’s Turbine’ is shaped in such a way that it can generate electricity regardless of which way the air is flowing. This means that power can be harnessed when the device is rising to the crest of a wave and also when it is falling to a trough, doubling the overall efficiency.

The final method for generating electricity from the ocean is called ocean thermal energy conversion (OTEC). This is another way we can indirectly generate solar energy using the ocean as a middle man. The way OTEC works is that a liquid with a low boiling point (like ammonia) is evaporated by the warm surface water of the ocean and expands, spinning a turbine. The ammonia vapour is then condensed using cold seawater and returned to the evaporation chamber to start the process over again.  The technology required for this method is simple and rapidly improving, meaning that OTEC is very much one to watch out for in the coming years.

So, which is better, WPGs or tidal barrages? WPGs hold greater promise in my view, largely because tidal barrages can be devastating to already strained marine ecosystems. Think about it; much of the ocean’s life is concentrated close to the shore. As the tide rises, both water and marine life can pass freely through the dam. Once that waterway is shut, however, the only way back to the sea is through a series of rotating blades. Many barrages are built on estuaries where rivers meet the sea. By preventing free movement through these estuaries, barrages can also seriously disrupt the spawning patterns of fish like salmon. WPGs, floating on the surface in open water, are much easier to build in a way that’s hospitable to marine life.

This is of vital importance; through plastic pollution, overfishing and ghost fishing, we have already utterly decimated almost all marine life. With plastic pollution and ocean acidification set to get much worse, we simply cannot afford to do any more harm to the beautiful animals that reside beneath the waves. If a plan is to be truly environmentally friendly, it must consider not only the CO2 it will emit, but also the effects it will have on our fellow animals. It is this major issue, coupled with the location problem mentioned earlier, which means that WPGs hold more promise than tidal barrages. In any case, it is clear that as both the financial and environmental costs of fossil fuels rise in the coming decades, blue power will assume an increasingly important position in the global energy industry.